Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Front Genet ; 13: 1034567, 2022.
Article in English | MEDLINE | ID: covidwho-20242831

ABSTRACT

Background: Clear cell renal cell carcinoma (ccRCC) is the main component of renal cell carcinoma (RCC), and advanced ccRCC frequently indicates a poor prognosis. The significance of the CCCH-type zinc finger (CTZF) gene in cancer has been increasingly demonstrated during the past few years. According to studies, targeted radical therapy for cancer treatment may be a revolutionary therapeutic approach. Both lncRNAs and CCCH-type zinc finger genes are essential in ccRCC. However, the predictive role of long non-coding RNA (lncRNA) associated with the CCCH-type zinc finger gene in ccRCC needs further elucidation. This study aims to predict patient prognosis and investigate the immunological profile of ccRCC patients using CCCH-type zinc finger-associated lncRNAs (CTZFLs). Methods: From the Cancer Genome Atlas database, RNA-seq and corresponding clinical and prognostic data of ccRCC patients were downloaded. Univariate and multivariate Cox regression analyses were conducted to acquire CTZFLs for constructing prediction models. The risk model was verified using receiver operating characteristic curve analysis. The Kaplan-Meier method was used to analyze the overall survival (OS) of high-risk and low-risk groups. Multivariate Cox and stratified analyses were used to assess the prognostic value of the predictive feature in the entire cohort and different subgroups. In addition, the relationship between risk scores, immunological status, and treatment response was studied. Results: We constructed a signature consisting of eight CTZFLs (LINC02100, AC002451.1, DBH-AS1, AC105105.3, AL357140.2, LINC00460, DLGAP1-AS2, AL162377.1). The results demonstrated that the prognosis of ccRCC patients was independently predicted by CTZFLs signature and that the prognosis of high-risk groups was poorer than that of the lower group. CTZFLs markers had the highest diagnostic adequacy compared to single clinicopathologic factors, and their AUC (area under the receiver operating characteristic curve) was 0.806. The overall survival of high-risk groups was shorter than that of low-risk groups when patients were divided into groups based on several clinicopathologic factors. There were substantial differences in immunological function, immune cell score, and immune checkpoint expression between high- and low-risk groups. Additionally, Four agents, including ABT737, WIKI4, afuresertib, and GNE 317, were more sensitive in the high-risk group. Conclusion: The Eight-CTZFLs prognostic signature may be a helpful prognostic indicator and may help with medication selection for clear cell renal cell carcinoma.

2.
Virus Res ; 323: 198956, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2240288

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic threatening the lives and health of people worldwide. Currently, there are no effective therapies or available vaccines for COVID-19. The molecular mechanism causing acute immunopathological diseases in severe COVID-19 is being investigated. Long noncoding RNAs (lncRNAs) have been proven to be involved in many viral infections, such as hepatitis, influenza and acquired immune deficiency syndrome. Many lncRNAs present differential expression between normal tissue and virus-infected tissue. However, the role of lncRNAs in SARS-CoV-2 infection has not been fully elucidated. This study aimed to review the relationship between lncRNAs and viral infection, interferon and cytokine storms in COVID-19, hoping to provide novel insights into promising targets for COVID-19 treatment.

3.
Front Microbiol ; 13: 1079764, 2022.
Article in English | MEDLINE | ID: covidwho-2236004

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that caused a global outbreak of coronavirus disease 2019 (COVID-19) pandemic. To elucidate the mechanism of SARS-CoV-2 replication and immunogenicity, we performed a comparative transcriptome profile of mRNA and long non-coding RNAs (lncRNAs) in human lung epithelial cells infected with the SARS-CoV-2 wild-type strain (8X) and the variant with a 12-bp deletion in the E gene (F8). In total, 3,966 differentially expressed genes (DEGs) and 110 differentially expressed lncRNA (DE-lncRNA) candidates were identified. Of these, 94 DEGs and 32 DE-lncRNAs were found between samples infected with F8 and 8X. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzes revealed that pathways such as the TNF signaling pathway and viral protein interaction with cytokine and cytokine receptor were involved. Furthermore, we constructed a lncRNA-protein-coding gene co-expression interaction network. The KEGG analysis of the co-expressed genes showed that these differentially expressed lncRNAs were enriched in pathways related to the immune response, which might explain the different replication and immunogenicity properties of the 8X and F8 strains. These results provide a useful resource for studying the pathogenesis of SARS-CoV-2 variants.

4.
Front Immunol ; 13: 1035111, 2022.
Article in English | MEDLINE | ID: covidwho-2215274

ABSTRACT

Introduction: The emergence of multiple variants of concerns (VOCs) with higher number of Spike mutations have led to enhanced immune escape by the SARS-CoV-2. With the increasing number of vaccination breakthrough (VBT) infections, it is important to understand the possible reason/s of the breakthrough infections. Methods: We performed transcriptome sequencing of 57 VBT and unvaccinated COVID-19 patients, followed by differential expression and co-expression analysis of the lncRNAs and the mRNAs. The regulatory mechanism was highlighted by analysis towards repeat element distribution within the co-expressed lncRNAs, followed by repeats driven homologous interaction between the lncRNAs and the promoter regions of genes from the same topologically associated domains (TAD). Results: We identified 727 differentially expressed lncRNAs (153 upregulated and 574 downregulated) and 338 mRNAs (34 up- and 334 downregulated) in the VBT patients. This includes LUCAT1, MALAT1, ROR1-AS1, UGDH-AS1 and LINC00273 mediated modulation of immune response, whereas MALAT1, NEAT1 and GAS5 regulated inflammatory response in the VBT. LncRNA-mRNA co-expression analysis highlighted 34 lncRNAs interacting with 267 mRNAs. We also observed a higher abundance of Alu, LINE1 and LTRs within the interacting lncRNAs of the VBT patients. These interacting lncRNAs have higher interaction with the promoter region of the genes from the same TAD, compared to the non-interacting lncRNAs with the enrichment of Alu and LINE1 in the gene promoter. Discussion: Significant downregulation and GSEA of the TAD gene suggest Alu and LINE1 driven homologous interaction between the lncRNAs and the TAD genes as a possible mechanism of lncRNA-mediated suppression of innate immune/inflammatory responses and activation of adaptive immune response. The lncRNA-mediated suppression of innate immune/inflammatory responses and activation of adaptive immune response might explain the SARS-CoV-2 breakthrough infections with milder symptoms in the VBT. Besides, the study also highlights repeat element mediated regulation of genes in 3D as another possible way of lncRNA-mediated immune-regulation modulating vaccination breakthroughs milder disease phenotype and shorter hospital stay.


Subject(s)
COVID-19 , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Transcriptome , Down-Regulation , COVID-19/genetics , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines/genetics , Vaccination , RNA, Messenger , Immunity, Innate/genetics , Inflammation/genetics
5.
Front Cell Infect Microbiol ; 12: 1041682, 2022.
Article in English | MEDLINE | ID: covidwho-2141716

ABSTRACT

Understanding the targets and interactions of long non-coding RNAs (lncRNAs) related to the retinoic acid-inducible gene-I (RIG-I) signaling pathway is essential for developing interventions, which would enable directing the host inflammatory response regulation toward protective immunity. In the RIG-I signaling pathway, lncRNAs are involved in the important processes of ubiquitination, phosphorylation, and glycolysis, thus promoting the transport of the interferon regulatory factors 3 and 7 (IRF3 and IRF7) and the nuclear factor kappa B (NF-κB) into the nucleus, and activating recruitment of type I interferons (IFN-I) and inflammatory factors to the antiviral action site. In addition, the RIG-I signaling pathway has recently been reported to contain the targets of coronavirus disease-19 (COVID-19)-related lncRNAs. The molecules in the RIG-I signaling pathway are directly regulated by the lncRNA-microRNAs (miRNAs)-messenger RNA (mRNA) axis. Therefore, targeting this axis has become a novel strategy for the diagnosis and treatment of cancer. In this paper, the studies on the regulation of the RIG-I signaling pathway by lncRNAs during viral infections and cancer are comprehensively analyzed. The aim is to provide a solid foundation of information for conducting further detailed studies on lncRNAs and RIG-I in the future and also contribute to clinical drug development.


Subject(s)
COVID-19 , Interferon Type I , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Signal Transduction , Ubiquitination , Interferon Type I/genetics
6.
Biomedicines ; 10(11)2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2099338

ABSTRACT

Fighting external pathogens relies on the tight regulation of the gene expression of the immune system. Ferroptosis, which is a distinct form of programmed cell death driven by iron, is involved in the enhancement of follicular helper T cell function during infection. The regulation of RNA is a key step in final gene expression. The present study aimed to identify the expression level of antisense lncRNAs (A2M-AS1, DBH-AS1, FLVCR1-DT, and NCBP2AS2-1) and FLVCR1 in COVID-19 patients and its relation to the severity of the disease. COVID-19 patients as well as age and gender-matched healthy controls were enrolled in this study. The expression level of the antisense lncRNAs was measured by RT-PCR. Results revealed the decreased expression of A2M-AS1 and FLVCR1 in COVID-19 patients. Additionally, they showed the increased expression of DBH-AS1, FLVCR1-DT, and NCBP2AS2. Both FLVCR1-DT and NCBP2AS2 showed a positive correlation with interleukin-6 (IL-6). DBH-AS1 and FLVCR1-DT had a significant association with mortality, complications, and mechanical ventilation. A significant negative correlation was found between A2M-AS1 and NCBP2AS2-1 and between FLVCR1 and FLVCR1-DT. The study confirmed that the expression level of the antisense lncRNAs was deregulated in COVID-19 patients and correlated with the severity of COVID-19, and that it may have possible roles in the pathogenesis of this disease.

7.
Pathogens ; 11(5)2022 May 02.
Article in English | MEDLINE | ID: covidwho-1875720

ABSTRACT

BACKGROUND: Long noncoding RNAs (LncRNAs) play critical roles in many respiratory diseases. Acute respiratory distress syndrome (ARDS) is a destructive clinical syndrome of respiratory diseases. However, the potential mechanism of LncRNAs on ARDS remains largely unknown. METHODS: To identify the profiles of LncRNAs and mRNAs in the LPS-induced ARDS mouse model, the microarray analyses were hired to detect the expression of LncRNAs and mRNAs in present study. Subsequently, microarray data were verified by quantitative qRT-PCR. Functional annotation on DE mRNAs and LncRNAs were carried out by bioinformatics analysis. Furthermore, the role of selected DE LncRNAs on correlated genes was confirmed by si-RNA and Western blot. RESULTS: The expression of 2110 LncRNAs and 2690 mRNAs were significantly changed, which were further confirmed by qRT-PCR. GO and KEGG analysis indicated that the up-regulated mRNAs were mainly related to a defense response and tumor necrosis factor (TNF) signaling pathway, respectively. LncRNA-mRNA co-expression analyses showed that LncRNAs NR_003508, ENSMUST00000131638, ENSMUST00000119467, and ENSMUST00000124853 may correlate to MLKL, RIPK3, RIPK1, Caspase1, and NLRP3, respectively, or cooperatively, which were highly involved in the cell necroptosis process. Furthermore, siRNA for NR_003508 confirmed the co-expression analyses results. CONCLUSION: To summarize, this study implied that the DE LncRNAs could be potent regulators and target genes of ARDS and will provide a novel insight into the regulation of the pathogenesis of ARDS.

8.
Life (Basel) ; 12(2)2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1686871

ABSTRACT

The current SARS-CoV-2 pandemic has emerged as an international challenge with strong medical and socioeconomic impact. The spectrum of clinical manifestations of SARS-CoV-2 is wide, covering asymptomatic or mild cases up to severe and life-threatening complications. Critical courses of SARS-CoV-2 infection are thought to be driven by the so-called "cytokine storm", derived from an excessive immune response that induces the release of proinflammatory cytokines and chemokines. In recent years, non-coding RNAs (ncRNAs) emerged as potential diagnostic and therapeutic biomarkers in both inflammatory and infectious diseases. Therefore, the identification of SARS-CoV-2 miRNAs and host miRNAs is an important research topic, investigating the host-virus crosstalk in COVID-19 infection, trying to answer the pressing question of whether miRNA-based therapeutics can be employed to tackle SARS-CoV-2 complications. In this review, we aimed to directly address ncRNA role in SARS-CoV-2-immune system crosstalk upon COVID-19 infection, particularly focusing on inflammatory pathways and cytokine storm syndromes.

9.
Fish Shellfish Immunol ; 120: 314-324, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1559895

ABSTRACT

Infectious hematopoietic necrosis virus (IHNV) is the vital pathogen that has caused the great economic loss in salmonid fisheries. To date, there is limited information concerning the changes of lncRNAs in RTG-2 cells infected by IHNV. In this study, a comparative transcriptome analysis of lncRNAs was performed in RTG-2 cells with and without IHNV infection to determine their changes and the effects on IHNV infection. The results showed that IHNV infection significantly changed the expression levels of lncRNAs and mRNAs, including 3693 differentially expressed lncRNAs (DE-lncRNAs) and 3503 differentially expressed mRNAs (DE-mRNAs) respectively. These DE-lncRNAs and DE-mRNAs induced by IHNV were mostly associated with immune response, RNA processing, and viral diseases related pathways. Further analysis found that some DE-lncRNAs might participate in the regulation of extracellular matrix metabolism, apoptosis, lipid synthesis, autophagy, and immune responses referring to the functions of their target genes. Afterwards, 349 co-expression relationships were constructed by 223 DE-lncRNAs and 271 DE-mRNAs, of which LTCONS_00146935 was the pivotal node in the interaction networks, and was together with its target genes modulated the immune responses under the IHNV infection. RT-qPCR results showed that the changes of the selected immune-related DEGs were in consistent with the RNA-seq data, suggesting that the sequencing data was relatively reliable. In summary, this is the first study to determine the changes and interactions of lncRNA-mRNA in RTG-2 cells under the IHNV infection. The results provided the valuable information concerning the lncRNAs in salmonid fish, which will benefit for future study on uncovering the roles of lncRNAs-mRNAs during the viral infection.


Subject(s)
Infectious hematopoietic necrosis virus , RNA, Long Noncoding , Rhabdoviridae Infections/veterinary , Transcriptome , Animals , Cell Line/virology , Fish Diseases/genetics , Fish Diseases/virology , Gene Expression Profiling/veterinary , Oncorhynchus mykiss , RNA, Long Noncoding/genetics , RNA, Messenger , RNA-Seq , Rhabdoviridae Infections/genetics
11.
Physiol Genomics ; 53(10): 433-440, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1398739

ABSTRACT

SARS-CoV-2 harbors many known unknown regions in the form of hypothetical open reading frames (ORFs). Although the mechanisms underlying the disease pathogenesis are not clearly understood, molecules such as long noncoding RNAs (lncRNAs) play a key regulatory role in the viral pathogenesis from endocytosis. We asked whether or not the lncRNAs in the host are associated with the viral proteins and argue that lncRNA-mRNAs molecules related to viral infection may regulate SARS-CoV-2 pathogenesis. Toward the end of the perspective, we provide challenges and insights into investigating these transgression pathways.


Subject(s)
COVID-19/genetics , Host-Pathogen Interactions/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Epitopes , Female , Gene Expression Regulation , Humans , Male , Open Reading Frames , Phylogeny , Protein Interaction Maps , SARS-CoV-2/metabolism , Sex Factors
12.
Front Immunol ; 12: 700184, 2021.
Article in English | MEDLINE | ID: covidwho-1365542

ABSTRACT

Coronavirus disease 2019 (COVID-19), which has high incidence rates with rapid rate of transmission, is a pandemic that spread across the world, resulting in more than 3,000,000 deaths globally. Currently, several drugs have been used for the clinical treatment of COVID-19, such as antivirals (radecivir, baritinib), monoclonal antibodies (tocilizumab), and glucocorticoids (dexamethasone). Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are essential regulators of virus infections and antiviral immune responses including biological processes that are involved in the regulation of COVID-19 and subsequent disease states. Upon viral infections, cellular lncRNAs directly regulate viral genes and influence viral replication and pathology through virus-mediated changes in the host transcriptome. Additionally, several host lncRNAs could help the occurrence of viral immune escape by inhibiting type I interferons (IFN-1), while others could up-regulate IFN-1 production to play an antiviral role. Consequently, understanding the expression and function of lncRNAs during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection will provide insights into the development of lncRNA-based methods. In this review, we summarized the current findings of lncRNAs in the regulation of the strong inflammatory response, immune dysfunction and thrombosis induced by SARS-CoV-2 infection, discussed the underlying mechanisms, and highlighted the therapeutic challenges of COVID-19 treatment and its future research directions.


Subject(s)
COVID-19/immunology , Host Microbial Interactions/genetics , Immunity, Innate/genetics , RNA, Long Noncoding/metabolism , Thrombosis/immunology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biomarkers/analysis , COVID-19/complications , COVID-19/genetics , COVID-19 Testing/methods , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation, Viral/drug effects , Gene Expression Regulation, Viral/immunology , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Immune Evasion/genetics , Pandemics/prevention & control , RNA, Long Noncoding/analysis , RNA, Long Noncoding/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/genetics , Signal Transduction/immunology , Thrombosis/genetics , Thrombosis/virology , Virus Replication/drug effects , Virus Replication/genetics , Virus Replication/immunology , COVID-19 Drug Treatment
13.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-1335173

ABSTRACT

The present review describes COVID-19 severity in diabetes and diabetic kidney disease. We discuss the crucial effect of COVID-19-associated cytokine storm and linked injuries and associated severe mesenchymal activation in tubular epithelial cells, endothelial cells, and macrophages that influence neighboring cell homeostasis, resulting in severe proteinuria and organ fibrosis in diabetes. Altered microRNA expression disrupts cellular homeostasis and the renin-angiotensin-system, targets reno-protective signaling proteins, such as angiotensin-converting enzyme 2 (ACE2) and MAS1 receptor (MAS), and facilitates viral entry and replication in kidney cells. COVID-19-associated endotheliopathy that interacts with other cell types, such as neutrophils, platelets, and macrophages, is one factor that accelerates prethrombotic reactions and thrombus formation, resulting in organ failures in diabetes. Apart from targeting vital signaling through ACE2 and MAS, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are also associated with higher profibrotic dipeptidyl transferase-4 (DPP-4)-mediated mechanisms and suppression of AMP-activated protein kinase (AMPK) activation in kidney cells. Lowered DPP-4 levels and restoration of AMPK levels are organ-protective, suggesting a pathogenic role of DPP-4 and a protective role of AMPK in diabetic COVID-19 patients. In addition to standard care provided to COVID-19 patients, we urgently need novel drug therapies that support the stability and function of both organs and cell types in diabetes.

14.
Cancer Cell Int ; 21(1): 278, 2021 May 25.
Article in English | MEDLINE | ID: covidwho-1243810

ABSTRACT

Epstein Barr-virus (EBV) is related to several cancers. Long non-coding RNAs (lncRNAs) act by regulating target genes and are involved in tumourigenesis. However, the role of lncRNAs in EBV-associated cancers is rarely reported. Understanding the role and mechanism of lncRNAs in EBV-associated cancers may contribute to diagnosis, prognosis and clinical therapy in the future. EBV encodes not only miRNAs, but also BART lncRNAs during latency and the BHLF1 lncRNA during both the latent and lytic phases. These lncRNAs can be targeted regulate inflammation, invasion, and migration and thus tumourigenesis. The products of EBV also directly and indirectly regulate host lncRNAs, including LINC00312, NORAD CYTOR, SHNG8, SHNG5, MINCR, lncRNA-BC200, LINC00672, MALATI1, LINC00982, LINC02067, IGFBP7-AS1, LOC100505716, LOC100128494, NAG7 and RP4-794H19.1, to facilitate tumourigenesis using different mechanisms. Additionally, lncRNAs have been previously validated to interact with microRNAs (miRNAs), and lncRNAs and miRNAs mutually suppress each other. The EBV-miR-BART6-3p/LOC553103/STMN1 axis inhibits EBV-associated tumour cell proliferation. Additionally, H. pylori-EBV co-infection promotes inflammatory lesions and results in EMT. HPV-EBV co-infection inhibits the transition from latency to lytic replication. KSHV-EBV co-infection aggravates tumourigenesis in huNSG mice. COVID-19-EBV co-infection may activate the immune system to destroy a tumour, although this situation is rare and the mechanism requires further confirmation. Hopefully, this information will shed some light on tumour therapy strategies tumourigenesis. Additionally, this strategy benefits for infected patients by preventing latency to lytic replication. Understanding the role and expression of lnRNAs in these two phases of EBV is critical to control the transition from latency to the lytic replication phase. This review presents differential expressed lncRNAs in EBV-associated cancers and provides resources to aid in developing superior strategies for clinical therapy.

15.
EPMA J ; 11(2): 289-309, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1086691

ABSTRACT

RELEVANCE: Ivermectin, as an old anti-parasite drug, can suppress almost completely the growth of various human cancers, including ovarian cancer (OC). However, its anticancer mechanism remained to be further studied at the molecular levels. Ivermectin-related molecule-panel changes will serve a useful tool for its personalized drug therapy and prognostic assessment in OCs. PURPOSE: To explore the functional significance of ivermectin-mediated lncRNA-EIF4A3-mRNA axes in OCs and ivermectin-related molecule-panel for its personalized drug therapy monitoring. METHODS: Based on our previous study, a total of 16 lncRNA expression patterns were analyzed using qRT-PCR before and after ivermectin-treated different OC cell lines (TOV-21G and A2780). Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics was used to analyze the protein expressions of EIF4A3 and EIF4A3-binding mRNAs in ovarian cancer cells treated with and without ivermectin. A total of 411 OC patients from the Cancer Genome Atlas (TCGA) database with the selected lncRNA expressions and the corresponding clinical data were included. Lasso regression was constructed to examine the relationship between lncRNA signature and OC survival risk. The overall survival analysis between high-risk and low-risk groups used the Kaplan-Meier method. Heatmap showed the correlation between risk groups and clinical characteristics. The univariate and multivariate models were established with Cox regression. RESULTS: SILAC-based quantitative proteomics found the protein expression levels of EIF4A3 and 116 EIF4A3-binding mRNAs were inhibited by ivermectin in OC cells. Among the analyzed 16 lncRNAs (HCG15, KIF9-AS1, PDCD4-AS1, ZNF674-AS1, ZNRF3-AS1, SOS1-IT1, LINC00565, SNHG3, PLCH1-AS1, WWTR1-AS1, LINC00517, AL109767.1, STARD13-IT1, LBX2-AS1, LEMD1-AS1, and HOXC-AS3), only 7 lncRNAs (HCG15, KIF9-AS1, PDCD4-AS1, ZNF674-AS1, ZNRF3-AS1, SOS1-IT1, and LINC00565) were obtained for further lasso regression when combined with the results of drug testing and overall survival analysis. Lasso regression identified the prognostic model of ivermectin-related three-lncRNA signature (ZNRF3-AS1, SOS1-IT1, and LINC00565). The high-risk and low-risk groups based on the prognostic model were significantly related to overall survival and clinicopathologic characteristics (survival status, lymphatic invasion, cancer status, and clinical stage) in OC patients and remained independent risk factors according to multivariate COX analysis (p < 0.05). CONCLUSION: Those findings provided the potential targeted lncRNA-EIF4A3-mRNA pathways of ivermectin in OC, and constructed the effective prognostic model, which benefits discovery of novel mechanism of ivermectin to suppress ovarian cancer cells, and the ivermectin-related molecule-panel changes benefit for its personalized drug therapy and prognostic assessment towards its predictive, preventive, and personalized medicine (PPPM) in OCs.

16.
J Biomol Struct Dyn ; 40(8): 3681-3696, 2022 05.
Article in English | MEDLINE | ID: covidwho-965123

ABSTRACT

The coronavirus disease, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a global health crisis that is being endured with an increased alarm of transmission each day. Though the pandemic has activated innumerable research attention to decipher an antidote, fundamental understanding of the molecular mechanisms is necessary to halt the disease progression. The study focused on comparison of the COVID-19 infected lung tissue gene expression datasets -GSE155241 and GSE150316 with the GEO2R-limma package. The significant up- and downregulated genes were annotated. Further evaluation of the enriched pathways, transcription factors, kinases, noncoding RNAs and drug perturbations revealed the significant molecular mechanisms of the host response. The results revealed a surge in mitochondrial respiration, cytokines, neurodegenerative mechanisms and deprived oxygen, iron, copper, and glucose transport. Hijack of ubiquitination by SARS-CoV-2, hox gene differentiation, histone modification, and miRNA biogenesis were the notable molecular mechanisms inferred. Long non-coding RNAs such as C058791.1, TTTY15 and TPTEP1 were predicted to be efficient in regulating the disease mechanisms. Drugs-F-1566-0341, Digoxin, Proscillaridin and Linifanib that reverse the gene expression signatures were predicted from drug perturbations analysis. The binding efficiency and interaction of proscillaridin and digoxin as obtained from the molecular docking studies confirmed their therapeutic potential. Two overlapping upregulated genes MDH1, SGCE and one downregulated gene PFKFB3 were appraised as potential biomarkers candidates. The upregulation of PGM5, ISLR and ANK2 as measured from their expressions in normal lungs affirmed their possible prognostic biomarker competence. The study explored significant insights for better diagnosis, and therapeutic options for COVID-19. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , MicroRNAs , Proscillaridin , Biomarkers , COVID-19/genetics , Digoxin , Gene Expression Profiling , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Docking Simulation , SARS-CoV-2/genetics
17.
Genes (Basel) ; 11(7)2020 07 07.
Article in English | MEDLINE | ID: covidwho-640013

ABSTRACT

The global spread of COVID-19, caused by pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for an imminent response from medical research communities to better understand this rapidly spreading infection. Employing multiple bioinformatics and computational pipelines on transcriptome data from primary normal human bronchial epithelial cells (NHBE) during SARS-CoV-2 infection revealed activation of several mechanistic networks, including those involved in immunoglobulin G (IgG) and interferon lambda (IFNL) in host cells. Induction of acute inflammatory response and activation of tumor necrosis factor (TNF) was prominent in SARS-CoV-2 infected NHBE cells. Additionally, disease and functional analysis employing ingenuity pathway analysis (IPA) revealed activation of functional categories related to cell death, while those associated with viral infection and replication were suppressed. Several interferon (IFN) responsive gene targets (IRF9, IFIT1, IFIT2, IFIT3, IFITM1, MX1, OAS2, OAS3, IFI44 and IFI44L) were highly upregulated in SARS-CoV-2 infected NBHE cell, implying activation of antiviral IFN innate response. Gene ontology and functional annotation of differently expressed genes in patient lung tissues with COVID-19 revealed activation of antiviral response as the hallmark. Mechanistic network analysis in IPA identified 14 common activated, and 9 common suppressed networks in patient tissue, as well as in the NHBE cell model, suggesting a plausible role for these upstream regulator networks in the pathogenesis of COVID-19. Our data revealed expression of several viral proteins in vitro and in patient-derived tissue, while several host-derived long noncoding RNAs (lncRNAs) were identified. Our data highlights activation of IFN response as the main hallmark associated with SARS-CoV-2 infection in vitro and in human, and identified several differentially expressed lncRNAs during the course of infection, which could serve as disease biomarkers, while their precise role in the host response to SARS-CoV-2 remains to be investigated.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , RNA, Long Noncoding/metabolism , Viral Proteins/metabolism , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Biomarkers/metabolism , Bronchi/cytology , COVID-19 , Cell Death , Cell Line , Cluster Analysis , Coronavirus Infections/genetics , Coronavirus Infections/virology , Epithelial Cells/cytology , Epithelial Cells/virology , Gene Regulatory Networks , Humans , Immunity, Innate , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Lung/metabolism , Lung/pathology , Lung/virology , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , RNA, Long Noncoding/genetics , SARS-CoV-2 , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL